import torch
from pytorchse3.se3 import se3_exp_map, se3_log_map
pytorchse3
Numerically stable implementations of batched SE(3) exp and log maps
Install
pip install pytorchse3
How to use
Here are two transformation matrices for which PyTorch3D
recovers the wrong log map (see this issue).
= torch.Tensor(
T
[
[-0.7384057045, 0.3333132863, -0.5862244964, 0.0000000000],
[0.3520625532, -0.5508944392, -0.7566816807, 0.0000000000],
[-0.5751599669, -0.7651259303, 0.2894364297, 0.0000000000],
[-0.1840534210, -0.1836946011, 0.9952554703, 1.0000000000],
[
],
[-0.7400283217, 0.5210028887, -0.4253400862, 0.0000000000],
[0.5329059958, 0.0683888718, -0.8434065580, 0.0000000000],
[-0.4103286564, -0.8508108258, -0.3282552958, 0.0000000000],
[-0.1197679043, 0.1799146235, 0.5538908839, 1.0000000000],
[
],
],-1, -2) ).transpose(
pytorchse3
computes the correct log map.
= se3_log_map(T)
log_T_vee log_T_vee
tensor([[ 1.1319, 1.4831, -2.5131, -0.8503, -0.1170, 0.7346],
[ 1.1288, 2.2886, -1.8147, -0.8812, 0.0367, -0.1004]])
Exponentiating the log map recovers the original transformation matrix with 1e-4 absolute error.
= se3_exp_map(log_T_vee)
eq_T assert torch.allclose(T, eq_T, atol=1e-4)
- eq_T T
tensor([[[-9.2983e-06, -2.3842e-07, 1.1504e-05, 2.9802e-08],
[-5.1558e-06, 8.5235e-06, -8.6427e-06, -2.9802e-08],
[ 8.6427e-06, -6.4373e-06, 4.4703e-07, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]],
[[ 8.0466e-06, 1.6212e-05, 6.0201e-06, -3.7253e-08],
[ 4.5896e-06, 8.6352e-06, 3.3975e-06, 2.9802e-08],
[-8.5831e-06, 1.0610e-05, -1.6809e-05, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]]])
References
pytorchse3
implements log/exp maps defined in Section 2 and 3 of Ethan Eade’s tutorial- Our numerically stable
so3_log_map
is a PyTorch port ofpytransform3d
- Taylor expansions for some coefficients in
se3_log_map
are taken fromH2-Mapping