import torch
from pytorchse3.se3 import se3_exp_map, se3_log_mappytorchse3
Numerically stable implementations of batched SE(3) exp and log maps
Install
pip install pytorchse3How to use
Here are two transformation matrices for which PyTorch3D recovers the wrong log map (see this issue).
T = torch.Tensor(
[
[
[-0.7384057045, 0.3333132863, -0.5862244964, 0.0000000000],
[0.3520625532, -0.5508944392, -0.7566816807, 0.0000000000],
[-0.5751599669, -0.7651259303, 0.2894364297, 0.0000000000],
[-0.1840534210, -0.1836946011, 0.9952554703, 1.0000000000],
],
[
[-0.7400283217, 0.5210028887, -0.4253400862, 0.0000000000],
[0.5329059958, 0.0683888718, -0.8434065580, 0.0000000000],
[-0.4103286564, -0.8508108258, -0.3282552958, 0.0000000000],
[-0.1197679043, 0.1799146235, 0.5538908839, 1.0000000000],
],
],
).transpose(-1, -2)pytorchse3 computes the correct log map.
log_T_vee = se3_log_map(T)
log_T_veetensor([[ 1.1319, 1.4831, -2.5131, -0.8503, -0.1170, 0.7346],
[ 1.1288, 2.2886, -1.8147, -0.8812, 0.0367, -0.1004]])
Exponentiating the log map recovers the original transformation matrix with 1e-4 absolute error.
eq_T = se3_exp_map(log_T_vee)
assert torch.allclose(T, eq_T, atol=1e-4)T - eq_Ttensor([[[-9.2983e-06, -2.3842e-07, 1.1504e-05, 2.9802e-08],
[-5.1558e-06, 8.5235e-06, -8.6427e-06, -2.9802e-08],
[ 8.6427e-06, -6.4373e-06, 4.4703e-07, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]],
[[ 8.0466e-06, 1.6212e-05, 6.0201e-06, -3.7253e-08],
[ 4.5896e-06, 8.6352e-06, 3.3975e-06, 2.9802e-08],
[-8.5831e-06, 1.0610e-05, -1.6809e-05, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]]])
References
pytorchse3implements log/exp maps defined in Section 2 and 3 of Ethan Eade’s tutorial- Our numerically stable
so3_log_mapis a PyTorch port ofpytransform3d - Taylor expansions for some coefficients in
se3_log_mapare taken fromH2-Mapping